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ABSTRACT
This paper targets at detecting preceding vehicles in a wide range of
distance. We propose an Adaboost-based approach combined with
hierarchical image and sub-window scaling schemes. The relation-
ship is investigated among object characteristics, image structures
and image scales. A parameter set is developed to easily adjust over-
all performance, which benefits researchers to establish a vehicle
detection system. It achieves 96.6% detection rate with 2.0% false
alarm rate along proposed methodology. The benchmark of several
learning-based vehicle detection approaches is also provided. The
results show the outperformance of the proposed method.

Index Terms— Vehicle detection, Adaboost, Haar-like, Image
scaling, Detection rate

1. INTRODUCTION

Nowadays, vehicular technologies are developed to solve not only
safety but also energy-saving problems that have drawn intensive
attention. Owing to the maturity of vision sensors, vision-based sys-
tems play an essential role in many applications. Blind Spot Warn-
ing Systems (BSWS) attempt to monitor and detect objects not seen
by drivers. Advanced Driver Assistance Systems (ADAS) provide
driving guideline for drivers. Moreover, Collision Warning Systems
(CWS) prevent vehicles from sudden crashes. These applications
all involve localization and identification of on-road vehicles, which
suggests the demand of robust vehicle detection and recognition.

2. PRIOR ARTS

Generally, a vision-based object analysis flow can be classified into
two stages after video capturing (Fig. 1). Object detection is to lo-
cate where candidates are in a frame and object recognition is to
verify if the candidates are the desired patterns. Sun et al. made
an overview for vision-based on-road vehicle analysis [1], which is
strictly divided into hypothesis generation and hypothesis verifica-
tion corresponding to detection and recognition respectively.

For object detection, knowledge-based methods utilize edge [2],
corner [3], and symmetry [2, 3] to identify vehicles. Yet, the ap-
proaches are sensitive to environmental factors such as changing illu-
mination. Motion-based methods use motion vectors such as optical
flow [4] to locate objects with large displacement but such methods
suffer from correspondence problems.

As for object recognition, template-based methods [5] utilize
predefined vehicle template to verify suspected patterns through cor-
relation. However, their performance may decisively rely on the cre-
ated templates. In recent years, machine-learning makes progress in
object recognition [6–12]. Features such as Haar-like [6, 7] and Ga-
bor [9, 10] are cooperated with classifiers, including SVM and Ad-
aboost, for vehicle recognition and categorization. These learning-
based methods yield a decent performance in the recent literatures.
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Fig. 1. General object detection and recognition flow.

This paper is organized as following. We briefly introduce the
Adaboost-based approach and its pitfalls in Sec. 3. Proposed meth-
ods are presented in Sec. 4 and Sec. 5. In Sec. 6, experiment results
are discussed. Sec. 7 summarizes our exploration and contributions.

3. ADABOOST-BASED APPROACH: OVERVIEW

Viola and Jones [6] proposed an object recognition method using
Adaboost with Haar-like features. The method is combined with a
sub-window scaling detection routine [8] (Fig. 2(a)). To ensure not
to miss any suspected patterns, every scaled sub-window is viewed
as a candidate and is verified through a boosted classifier.

Detection: To detect both small-sized and large-sized objects,
sub-windows progressively scan entire image and are up-scaled with
a window scaling factor WSF for the next scan phase (Fig. 2(a)).

Recognition: It becomes a binary classification problem. To
distinguish these scaled sub-windows, a stage cascade composed of
trained weak classifiers is constructed statistically. Non-object sub-
windows can be rapidly rejected with early stage classifiers. More
complex stage classifiers are performed subsequently on object-like
sub-windows only if they passed through previous stage classifiers.

Grouping: Each detected object may contain multiple over-
lapping verified neighboring sub-windows, which indicates multi-
ple hits. Neighboring sub-windows are grouped into a single win-
dow representing the detected object. The more neighboring sub-
windows are combined, the higher confidence the object has. Even-
tually, if the object’s confidence is greater than a designed threshold,
it is accepted as a verified object.

Although the detection scheme achieves low-miss outcome on
account of full-scanning procedure, it also introduces many false
alarms at the same time. Besides, the method is mainly for detecting
objects in similar depth, which is not appreciated in situations like
detecting vehicles in a variety of distances.

In this paper, we proposed hierarchical image and window scal-
ing schemes. Observations and prior knowledge are involved to
significantly improve overall accuracy and reduce computational
time. In addition, multiple cascades are considered to further en-
hance recognition capability.
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Fig. 2. Detection routines. (a)Conventional sub-window scaling rou-
tine. (b)Proposed hierarchical approach.

4. PROPOSED METHODS: DETECTION

The proposed hierarchical detection routine considers both sub-
window scaling and image scaling. We conduct observations on
object size corresponding to support detecting distance in different
image scales. By analyzing object trajectories and image structures,
region of interests are marked off. These correlations are expressed
with a principal parameter set {ISF, WSF, α, s, β, γ}.

4.1. Hierarchical Detection Routine

There are two steps in the routine (Fig. 2(b)). Firstly, an image pyra-
mid is constructed through down-sampling with an image scaling
factor (ISF). For each level in the pyramid, sub-window scaling is
adopted except that the size of scaled sub-windows is constrained.
Secondly, the detection results of each level are combined through
an OR-Maximum (OR-M) operator.

In the first step, we determine the maximum size of scaled sub-
windows in each level along a relationship between detecting dis-
tance and object width in pixel. Fig. 3(a) shows the object width in
pixel is approximately inversely proportional to the distance for each
level, called O-D curves which can be formulated by,

wol×D = K×Wl∼= wsl×D
(1)

where D is the detecting distance. The subscript l stands for level
count ranging from 0 to L − 1. wol and Wl are the object width
and image width in pixel for each level respectively. K is a constant
ranging from 2.0 to 2.5 depending on pixel aspect ratio and sen-
sor parameters. The formula can be approximated with sub-window
width wsl if WSF is close to 1. According to Eq. 1, we shift the
regression line of the bottom O-D curve, that is level L − 1, to de-
rive the maximum scaled sub-window width wsmaxl . The shifted
regression curve is written as,

(wsL−1+wsminα)×D = K×WL−1 (2)

where wsmin is the minimum sub-window width (the same as train-
ing patch width) and is same for each level. α is a shifting factor.
Form Eq. 1 and Eq. 2, wsmaxl is then given by,

wsmaxl =
wsminα×W

l
(W

l
−W

L−1 )

= wsminα

1−ISF L−1−l

(3)

A distance overlap (DOV) is defined as the overlapped detecting
distance between two layers under constraints wsmaxl and wsmin

(Fig. 3(a)). Therefore, by adjusting α to a higher value, DOVs are
enlarged. Larger DOVs imply same objects may be detected in dif-
ferent levels, which benefits the OR-M operator in the next step. This
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Fig. 3. Observations on object characteristics. (a)Relationship be-
tween detecting distance and width of the targeted objects in pixel.
A DOV is illustrated (the overlapping segment). (b)Trajectories of
objects in different resolution layers.

also suggests that if an object is not detected in level L−n, it may be
detected in level L−(n+1) or L−(n+2). Consequently, the larger
the DOVs are, the better the performance is.

In the second step, an OR-M binary operator (
⊕

) is defined as
selecting the detected objects with highest conference among levels.
A lower grouping threshold is applied to each layer before OR-M
operator but a higher one is set afterwards. Accordingly, it has higher
probability to accept true positives through the OR-M operator.

4.2. Intra-level Sub-window Reduction

In a front-faced view image, objects do not appear in some locations
such as sky. Hence, there are many redundant scaled sub-windows.
An intra-level sub-windows reduction constraint is proposed.

Fig. 3(b) records trajectories of three types of vehicles for four
levels, and each point represents a 2D position corresponding to that
vehicle in temporal domain. An observation is made that an object’s
width in pixel is approximately a linear function of the projected 2D
trajectory (Y-coordinate) of that object. Therefore, an upper-bound
of scaled sub-window size is applied in each scan phase. The upper-
bound wsupperl is a regression of experiential data and statistical
data, which can be formulated by,

wsupperl = (s×PosY0 − β0 )×ISF l

= s×PosYl − βl

(4)

where s is a position correlated factor and β is a position offset
depending on the image horizon. PosYl is denoted as image Y-
coordinate. In a certain y position, a sub-window with width wsl

larger than wsupperl is not processed for further recognition. Ac-
cordingly, there are scanning and non-scanning regions in an im-
age (Fig. 4(a)). Therefore, redundant sub-windows are eliminated,
which implies the higher chance to reduce false alarms.
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4.3. Inter-level Region of Interest Selection

Suppose the optical axis is parallel to the ground, an image horizon
is defined as the horizontal line passing through the optical center.
Intuitively, with the front-faced camera setup, the closer to an image
horizon an object is, the smaller it is. It is obvious that far-objects
only appear in a narrow strip near the image horizon. Thus, we re-
strict the region of interest (ROI) of each level from full-frame region
to a narrow strip. Besides, we detect far-objects in higher resolu-
tion level and leave near-object detection in lower resolution level
(Fig. 4(b)). On the other hand, near-objects locate at the narrow strip
ROI in lower resolution because of image down-sampling.

From Eq. 3, there exists a level l
′

such that Eq. 5 come into
existence. A distance gap h

l
′ is decided and described by Eq. 6,

wo0×ISF l
′
≤ wsminα ≤ wsminα

1−ISF L−1−l
′ (5)

(pos0−IH0 )×ISF l
′
≤ h

l
′ (6)

where pos0 and IH0 are denoted as Y-coordinate value of a sub-
window center and that of the image horizon in the original resolu-
tion respectively. From Sec. 4.2, object width can be approximated
as a linear function of its 2D position and be expressed by,

wo0 � κ·pos0−η

= κ
′
(pos0 − IH0 )

(7)

From Eq. 5 and Eq. 7, we rewrite Eq. 6 into Eq. 8 to describe

h
l
′ . i is substituted for i

′
without losing generalities. At last, Eq. 9

depicts the desired ROI strip HROIl is two times the height of hl

plus an error term δ caused by video oscillation. Eq. 9 suggests a
constant height ROI strip in every layer. In addition, the greater the
ISF is, the narrower a ROI strip is.

(pos0−IH0 )×ISF l
′

≤ wsmin
α

κ
′

= γ·wsmin

= h
l
′

(8)

1
2
HROIl

= γ·wsmin+δ (9)

5. PROPOSED METHODS: RECOGNITION

The physical size of vehicles is similar in width but diverse in height,
which results in different object aspect ratio. Consequently, multiple
cascades are created instead of using a single cascade for recogni-
tion. The resultant object confidence is the average of those inde-
pendently produced by each cascade. The resultant confidence CR

is given by Eq. 10 and S is the total number of cascades.

CR =
∑S

i=1 Ci

S
(10)

6. EXPERIMENTAL RESULTS

Real sequences were captured from a 24fps CMOS front-mounted
camera with 640×480 and 1280×960 intermediate resolutions.
2034 vehicles’ rear parts and 2540 non-vehicles are trained to build
four 20-stage cascades with Adaboost. The trained window sizes are
20×20, 20×16, 20×12, and 20×10 (wsmin=20). For comparison,
we re-implemented VJ’s method using OpenCV library. Programs
are run on a PC with Intel Duo Core 2.67GHz CPU equipped.

Videos with 1280×960 resolutions are selected for the following
experiments. We examine detection rate (DR) and false alarm rate
(FAR) under different {ISF, WSF, α, s, β, γ} sets. Receiver op-
erating characteristic (ROC) curves are constructed afterwards. The
term conventional indicates VJ’s method with sub-window scaling.
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Fig. 4. Sub-window scanning orders. (a)With intra-level sub-
window reduction. (b)With inter-level region of interest selection.

In Fig. 5(a), the hierarchical approach is applied without intra-
level sub-window reduction (intra- for shorthand) and inter-level re-
gion of interest selection (inter- for shorthand). Image sub-sampling
is executed through bilinear interpolation. Besides, ISF is equal
to the inversion of WSF in conventional method. The minimum
down-sampled resolution is one-sixteenth of the original resolution.
In conclusion, 4-cascade structure is superior to 1-cascade and 2-
cascade structures. The proposed method outperforms the conven-
tional one. Under 3% FAR, the proposed method with three parame-
ter sets all outperforms conventional with 4 to 10% margin. Among
them, the hierarchical method with ISF 0.88 achieves best perfor-
mance and yields 95.6% DR with 4.0% FAR.

Fig. 5(b) and 5(c) show the improvement on performance with
intra- and inter- involved. s and β are equal to 1.8 and 800 respec-
tively. The greater ISF implies a larger DOV, a narrower ROI, and
more resolution levels. As α increases, the performance raises but
saturates at the boundary where α is about 4.0. This infers further
raise α is less beneficial. Our method yield 96.6% DR with 2% FAR
and 95% DR with only 1% FAR.

Fig. 6 demonstrates the effects with different intra- and inter-
parameters. We consider the situation under low FAR (less than
10%). In Fig. 6(a) , as the intercept β increases, the perfor-
mance drops because the upper-bound wsupper becomes stricter.
In Fig. 6(b) , the saturation occurs when γ is equal to 0.75 which
leads to 50-pixel HROI in height if oscillation term is equal to 5
pixels. As expected, DR increases as γ increases.

The state-of-the-arts are analyzed in five aspects (Table 1).
The results show the proposed method outperforms other methods.
The average processing time is listed for two resolution specifica-
tions. 0.18 and 2.13 seconds per frame are needed for 640×480
and 1280×960 videos respectively. However, 10 to 20 fps at least
is required for a real-time vision-based system. This suggests the
necessity of hardware participation, such as DSPs or ASICs. At last,
Fig. 7 illustrates detection results in different driving environments,
including tunnel, highway, and typical road.

7. CONCLUSIONS

Our contribution is twofold. (1)A recognition-oriented vehicle de-
tection flow is proposed, which integrates image and sub-window
scaling into a complete routine. (2)A parameterized set is organized
to explore the trade-off between accuracy and efficiency, which pro-
vides researchers to establish related systems. Totally, the proposed
framework declares convincing detection for on-road vehicles.
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Methods Detection Recognition Accuracy(%) Average Processing Time
(feature/classifier) (DR / FAR) (s/frame)

{ISF, WSF, α, s, β, γ} (640×480/1280×960)

Fu [11] Static ROIs Edge/SVM 87.6 / N/A N/A
EGFO [10] Edge-based Gabor/SVM 91.0 / 6.4 N/A

BGF [9] Static ROIs Gabor/Boosting+SVM 95.8 / 8.8 N/A

VJ [6] Scaled Haar-like/Adaboost 96.4 / 15.5 3.98 / 12.81
sub-window

Proposed Scaled Haar-like/Adaboost 95.8 / 2.0 0.18 / 2.13
sub-window + scaled image + {0.75, 1.125, 3.0, 1.8, 800, 1.5}

intra- + inter- + 96.6 / 2.0 0.57 / 3.62
{0.83, 1.125, 3.0, 1.8, 800, 1.5}

Table 1. Benchmark of state-of-the-arts and proposed method.
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Fig. 5. ROC curves comparison between conventional and hierarchical detection schemes. (a)No intra- and inter- in hierarchical method.
Multiple cascades are considered in conventional methods. (b)Hierarchical method with intra- and inter-. ISF is equal to 0.75 with α ranging
from 2.0 to 4.0. s is 1.8 and β is 800. (c)Similar to (b) but ISF is equal to 0.83.
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Fig. 6. Effects on detection rate. (a)Intra-level sub-window reduc-
tion with different β. (b)Inter-level region of interest selection with
different γ.
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